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The development of models of the ocean tides with higher resolution near coastlines and coarser resolu-
tion offshore, has been required to account for the significant impacts of coastline configuration and
bathymetry (associated with sea level rise) on both the amplitude and phase of tidal constituents. This
capability becomes especially important in the context of tidal analyses at times in the past when sea lev-
els are known to have differed significantly from present. Here we present a novel global model based on
the discontinuous Galerkin disretization of the shallow water equations that employs third order Runge–
Kutta time stepping on unstructured triangular grids. The model has been efficiently parallelized and is
thereby shown to achieve essentially perfect linear scaling which makes it suitable for the generation of
extremely high resolution results in local regions of interest.

The paper includes a detailed development of the mathematical and numerical framework which is
first tested in the context of analyses of a series of well established aquaplanet benchmarks for the shal-
low water equations on the sphere. These benchmarks include: (1) steady state nonlinear geostrophic
flow in the context of an hp convergence study, (2) Rossby wave response arising from a geostrophic flow
impinging on localized topography and (3) development of barotropic instability in a perturbed balanced
zonal flow. For our target tidal applications the basic shallow water system is extended to include the
influence of internal tide-related drag in the deep ocean as well as the drag in shallow marginal seas
together with the influence of gravitational self-attraction and loading. Global tidal simulations with var-
ious offshore and coastal resolutions are compared with the standard benchmark based upon satellite
altimetry data. Initial investigations of the M2 tidal amplitude, phase and energy budget are provided
and shown to be highly satisfactory at the level of resolution for which results are provided.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling of global ocean tides has experienced a resurgence
of interest over the past decade due to increasing recognition
of the critical role played by the dissipation of the barotropic
tidal flow over bottom topography through excitation of internal
tides (Garrett and Kunze, 2007). This interaction is known to
contribute significantly to the energy budget of the tide and
contribute critically to the establishment of the spatial distribu-
tion of the turbulent diapycnal diffusivities that arise as a conse-
quence of small scale ocean mixing processes (Munk and
Wunsch, 1998).

The amplitude and phase of individual tidal constituents are
also significantly impacted by sea level rise and the associated vari-
ations in coastline configurations and ocean bathymetry, not only
under modern global warming conditions but also in the deep past
(Griffiths and Peltier, 2008; Griffiths and Peltier, 2009; Egbert et al.,
2004; Uehara et al., 2006). In order to better address all of these is-
sues, an improved global model of ocean tides is expected to be a
useful tool, especially if based upon modern numerical methodol-
ogies that are able to make full use of existing computational
capability.

Barotropic oceanic tides have been traditionally modeled
using one or the other of the following three distinct
methodologies:

1. Globally structured Arakawa C-grid models by using conven-
tional second order centred finite differences (Egbert et al.,
2004; Arbic et al., 2004) or invoking a rotation of the poles of
the spherical polar coordinate system as in Griffiths and Peltier
(2008); Griffiths and Peltier (2009) so as to enable high resolu-
tion near the poles and avoid the geometrical singularity at the
poles.

2. Globally unstructured triangular grids with local refinements
based on use of a finite volume scheme (Stuhne and Peltier,
2009) or a finite element approach (Le Provost et al., 1994,
Lyard, 1997, Lyard et al., 2006).
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http://dx.doi.org/10.1016/j.ocemod.2013.06.001
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Fig. 1. Definition of water depth (h), bathymetry (hs) and free-surface elevation f in
the rotating shallow water equations.
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3. Hybrid methods (nested modeling) as in Hill et al. (2011) where
a global model with coarse resolution is employed to provide
the ‘‘open’’ boundary conditions required by a separate regional
model.

Globally structured grid-based tidal simulations in a conven-
tional spherical polar coordinate system, not only suffer from the
polar singularity problem, but are incapable of locally resolving
the coastlines or arbitrary regions of interest, without imposing a
global refinement of the mesh and hence unacceptable computa-
tional cost. Unstructured grids on the other hand, provide a supe-
rior alternative, enabling selective focus upon specific regions of
interest such as topographic features in the deep ocean or coastal
shelves and estuaries. Insofar as the third of the above mentioned
methodologies is concerned, in which a high resolution local model
of one design is nested within a low resolution model of a perhaps
different design, this strategy relies upon the quality of the open
boundary conditions provided by the global model when applied
to drive that nested within it. The correct prescription of the open
boundary conditions is challenging (Logutov and Lermusiaux,
2008), however, and noticeably affects the estimation of regional
high-resolution tides (Carter and Merrifield, 2007). The availability
of a standalone framework which can be employed to study highly
resolved regions without relying on secondary models would
therefor be extremely useful for a number of modern problems
in which high resolution local information concerning tidal constit-
uents is required that does not rely upon having the open bound-
ary condition information being provided by an additional model.
The search for an appropriate compromise between numerical
accuracy, flexibility and efficiency must be the main driver for
selection of the discretization scheme in a tidal model. In contrast
to finite difference methods, finite element (continuous Galerkin)
and finite volume methods share an important robustness in their
ability to represent complex computational domains based on tri-
angular tessellation of the sphere as in Stuhne and Peltier (2009)
and Lyard et al. (2006). Nevertheless, finite element methods are
able to provide higher accuracy on unstructured grids whereas fi-
nite volume methodology is preferable insofar as conservation
properties are concerned especially in advectively dominated flows
(Hesthaven and Warburton, 2008). Furthermore, the computa-
tional cost associated with solving tidal hydrodynamics analyses
using any of the above discretization schemes, either in the time-
domain (Stuhne and Peltier, 2009) or the frequency domain (Grif-
fiths and Peltier, 2008) is prohibitive, alluding to the parallel per-
formance of the desired numerical scheme. All of these facts
have led us to the development of our methodology of choice.

A discontinuous Galerkin (DG) discretization of conservation
laws, combines all the favorable properties of finite volume and fi-
nite element methods (Cockburn and Shu, 1998) making it an ideal
choice for tidal simulation. It provides very high orders of accuracy
(both in space and time) while ensuring that mass and momentum
transports are locally conserved (Giraldo et al., 2002). In addition,
DG inherits the flexibility in representing geometrical features
using global unstructured grids thus facilitating the use of local
spatial refinement. In addition to the above properties and as will
be shown in what follows, the DG scheme, provides exceptional
scaling properties due to its compact stencil when parallelized
even across thousands of individual computer ’’cores’’ on a modern
commodity cluster.

DG based shallow water models on the sphere have previously
been developed in (i) Cartesian coordinates for icosahedral-based
quadrilateral (Giraldo et al., 2002) and triangular (Giraldo, 2006)
grids (ii) cubed-sphere grids in curvilinear coordinates (Nair
et al., 2005; Nair et al., 2005) and (iii) spherical triangular coordi-
nates (Laeuter et al., 2008). There are also several DG-based shal-
low water models on the f-plane or b-plane such as those by
Aizinger and Dawson (2002) and Eskilsson and Sherwin (2004).
More recently these methods have been employed in different
applications such as: regional studies of hurricane storm surges
(Dawson et al., 2011), tidal flows around shallow water islands
(Bernard et al., 2009), coastal ocean modeling applications with
possible h and p adaptivity (Bernard et al., 2007; Kubatko et al.,
2009), and for global tsunami simulations (Blaise and St-Cyr,
2012). None of the previous work, however, has addressed the
problem of global tidal simulation which is the focus of the current
paper.

In this paper, we present a standalone framework for accurate
multi-scale investigation of barotropic tides based on the use of
third order Runge–Kutta discontinuous Galerkin discretization of
the nonlinear shallow water equations using global icosahedral
grids with proper tidal forcing. Section 2 explains the mathemati-
cal model and the DG formulation. Section 3, describes our numer-
ical implementation and parallelization algorithm. Several
aquaplanet benchmark tests are performed together with a series
of global tidal simulations which are presented and discussed in
Sections 4 and 5, respectively. We offer a summary and conclu-
sions in Section 6.

2. Shallow water equations and the barotropic tide

Barotropic ocean tides are well represented in terms of 2D
spherical shallow water equations (Egbert et al., 2004). The com-
plete forms of these equations required for this application, as dis-
cussed for example in Hendershott (1972), will be presented in
what follows. Here we will begin by stating the general form of
these equations that are employed to describe the dynamics of a
thin layer of fluid with depth h on the surface of a sphere, in terms
of the geopotential height (/ ¼ gh) in conservation form as follows:

@t/þr � /u ¼ 0; ð1Þ

@tð/uÞ þ r � ð/uuÞ ¼ �f êg � ð/uÞ � /rð/� /sÞ þ
g
q
F ; ð2Þ

in which /u is the depth-averaged horizontal transport and F de-
notes a general forcing term which is zero for an unforced aquapla-
net flow but will be specified for our tidal studies in Section 2.2.
Also f is the Coriolis parameter and êg represents a unit vector, nor-
mal to the surface of the sphere pointing in the direction opposite to
that of the gravitational acceleration of strength g. As depicted in
Fig. 1, the fluid depth is:

hðx; tÞ ¼ hsðxÞ þ fðx; tÞ ð3Þ
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where f is the free-surface elevation and hs denotes the bathymetric
depth measured from the undisturbed level of the ocean surface
which is assumed to be a gravitational and centrifugal equipotential
surface (the geoid of classical geodesy, see Peltier et al. (2012) for a
detailed discussion). We will base our model upon the above forms
of the shallow water equations in a Cartesian coordinate system lo-
cated at the origin of the sphere.

2.1. Shallow water in Cartesian coordinates

In the global Cartesian coordinate system, which has been em-
ployed in this work, Eqs. (1) and (2), combined as a system of cou-
pled equations, can be written in flux form as follows:

@tQ þr � FðQ Þ ¼ SðQ Þ ð4Þ

In this representation, conserved variables are lumped into
Q ðx; tÞ ¼ / /u½ �T and the flux and source terms are denoted by F
and S respectively which are defined as F ¼ Fx; Fy; Fz� �

with the fol-
lowing components:

Fx ¼

/u

/u2 þ 1
2 /2

/uv
/uw

26664
37775; Fy ¼

/v
/uy

/v2 þ 1
2 /2

/vw

26664
37775; Fz ¼

/w

/uw

/vw

/w2 þ 1
2 /2

26664
37775
ð5Þ

and the components of S in the absence of tide-related terms are:

S ¼

0
f z

a /v � y
a /w

� �
þ //s:x þ lx

f x
a /w� z

a /u
� �

þ //s;y þ ly

f y
a /u� x

a /v
� �

þ //s;z þ lz

26664
37775 ð6Þ

In the above equations, Earth’s radius is a ¼ 6:37122� 106 m
and êg ¼ x=a. Note that the pressure term /r/ ¼ rð12 /2Þ in Eq.
(2) has been moved to the flux term in order to cast the governing
equations into standard conservation form (Giraldo, 2000). This
formulation enables direct analysis of a conservative system based
upon the conservation laws themselves.

Because of the additional degree of freedom, acquired by choos-
ing to describe what is a two dimensional motion on the surface of
a sphere using a three dimensional global Cartesian coordinate sys-
tem, the velocity vector u ¼ u;v ;wð ÞT must now be explicitly con-
strained to the surface. As first proposed by Cote (1988), this can be
achieved by introducing a force which appears through a Lagrange
Multiplier, and is designed to annihilate any tendency of fluid par-
ticles to accelerate off this surface. Writing the constrained velocity
vector in Cartesian coordinates as uc ¼ uu þ lx (where uu is the
unconstrained velocity corrected by lx and l is the Lagrange mul-
tiplier), and requiring zero projection along x, one can derive the
projection matrix introduced by Williamson et al. (1992) as:

uc ¼ Puu

P ¼ I � xT x
a2 ð7Þ

After each stage of the Runge–Kutta time-stepping in the mod-
el, the above projection matrix acts on the discretized velocity vec-
tor to ensure spherical tangency.

2.2. Tidal forcing

For the simulation of ocean tides, we solve the full nonlinear
barotropic shallow water equations as in Eqs. (1) and (2), unlike
most of the previous tidal models where the nonlinear advection
of horizontal transport in Eq. (2) is omitted (e.g., see Egbert et al.,
2004; Griffiths and Peltier, 2008; Griffiths and Peltier, 2009; Lyard
et al., 2006). Also F in Eq. (2) must include momentum sources and
sinks associated with tides which leads to the following modified
form of Eq. (6) with S redefined as:

S ¼ 0;�f êg � ð/uÞ þ /r /eq þ /sal � /s

� �
� g

q
DBL � DITð Þ

� �T

ð8Þ

in which /eq ¼ gfeq and feq is the equilibrium tidal elevation induced
by the gravitational field of the Moon or Sun for the specific lunar
and solar tides of interest. Periodic expressions of feq encompassing
long-period (l), diurnal (d) and semi-diurnal (s) tides can be ex-
pressed as.

feq ¼
X

l

Aljl
1
2
� 3

2
sin2 h

� 	
cos xltð Þ þ

X
d

Adjd sinð2hÞ

� cos xdt þ kð Þ þ
X

s

Asjs cos2 h cos xst þ 2kð Þ ð9Þ

where h and k are latitude and longitude, A is the equilibrium ampli-
tude, x is the tidal frequency and j is the appropriate surface load
Love number (Farrell et al., 1972; Hendershott, 1972), all of which
will be found compiled in (Arbic et al., 2004 Table 2).

The effect of the gravitational self-attraction and loading (SAL)
of the tide by the deforming surface of the solid earth is included
in /sal ¼ gfsal. The exact representation of fsal involves a convolu-
tion integral of f which turns Eq. (4) into an integro-differential
equation which renders the numerical solution computationally
challenging (Hendershott, 1972; Ray, 1998). A simplified scalar
approximation of fsal ¼ bf (where b ¼ 0:085 (Accad and Pekeris,
1978)), although crude (Ray, 1998), will suffice in the current paper
which focuses on the overall numerical framework. The corre-
sponding pressure terms (1

2 /2) in Eq. (5) are multiplied by a factor
of ð1� bÞ as a consequence of this approximation.

The momentum dissipation acting on the tide is represented
through parametrization of boundary layer drag DBL and an addi-
tional drag induced by an assumed vertically averaged influence
of the internal tides DIT. The boundary layer drag is parameterized
as per (Taylor, 1919) using the canonical drag coefficient of
cd ¼ 0:0025 as:

DBL ¼ qcdjuju; cd ¼ 0:0025 ð10Þ

Following Griffiths and Grimshaw (2007) and Griffiths and Pel-
tier (2008, 2009), we will parameterize the internal tide drag
through the addition of the term:

DIT ¼
qN2hs

3x
u � rhsð Þrhs �

1 jf j < x
0 jf j > x



ð11Þ

where f is the Coriolis parameter and N is the vertically averaged
buoyancy frequency of the ocean which for a single epoch of time
is assumed to be a function only of position to be obtained from di-
rect ocean observations under modern conditions or from the pre-
dictions of a full coupled atmosphere–ocean climate model for
past or future conditions. For the purpose of the results to be shown
in the present paper, we have employed the neutral density mea-
surements from WOCE to compute N as follows:

N ¼ 1
hs

Z 0

�hs

NðzÞdz ð12Þ

This parametrization for the internal tide drag, ensures anisot-
ropy of the drag with respect to bottom topography in the sense
that the drag will be zero for flow parallel to bathymetric contours
but maximum when the flow is perpendicular to them. There is a
strong analogy here with the problem of mountain wave drag asso-
ciated with the launching of internal waves by the flow of density
stratified atmospheric air over high topography (e.g., Peltier and
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Clark, 1979, 1983; Peltier and Scinocca, 1990). In addition, there is
zero drag for waves that are longer than the inertial wavelength
which for M2 tides translates into latitudes with jhj > 74:5�.

3. Numerical scheme

The proposed model solves Eq. (4) with proper source terms as
in Eqs. (6) or (8), and flux terms as in Eq. (5) on a global spherical
triangular tessellation of the surface of the sphere using the nodal
DG approach. This section introduces the discretized set of equa-
tions, the required local operators, grid generation methodology
and parallelization.

3.1. Discontinuous Galerkin spatial discretization

For the spatial discretization of Eq. (4), the spherical computa-
tional domain X is split into K triangular elements Dk with curvilin-
ear edges (Giraldo, 2006) and the exact solution is approximated
by a direct sum of local solutions Qk

hðx; tÞ as:

X ’ Xh ¼
[K
k¼1

Dk; Qðx; tÞ ’ Q hðx; tÞ ¼a
K

k¼1
Q k

hðx; tÞ

The local discretized solution Qk
h on each triangular domain Dk,

is approximated using a local Nth order piecewise polynomial:

x 2 Dk : Qk
hðx; tÞ ¼

XNp

i¼1

Q k
hðxk

i ; tÞ‘
k
i ðxÞ; ð13Þ

where ‘k
i ðxÞ is the multidimensional interpolating Lagrange polyno-

mial defined on Np grid points of the kth element.

3.1.1. Weak DG formulations
Following a general Galerkin approach, the local residual,

formed after substituting Qk
hðx; tÞ into Eq. (4), must be forced to

vanish by requiring it to be orthogonal to all the test functions w
in a globally defined space of all possible test functions. Integrating
the flux term by parts and applying Green’s theorem yields the
classical formulation of weak DG in a local semidiscrete form
(Cockburn and Shu, 2002):Z

Dk

@Q h

@t
� IN FhðQ Þf g � r � IN ShðQ Þf g

� �
wiðxÞdx

¼ �
Z
@Dk
IN F�hðQ Þ � n̂
� �

wiðxÞdx ð14Þ

where n̂ is the outward-facing normal vector on the element
boundary @Dk and IN indicates the Nth order interpolating operator
associated with element nodes as will be precisely specified in Eq.
(23) below.

Writing Eq. (14) in a semi-explicit form, where the left-hand
side includes only the transient term, the remaining terms in the
right-hand side are divided into surface integrals of flux and source
terms on Dk as well as an edge integral of the numerical flux (the
terms with an asterisk) on @Dk as:Z

Dk

@Q h

@t
wh

� 	
dx¼

Z
Dk
IN Fx

h

� �@wh

@x
þIN Fy

h

� �@wh

@y
þIN Fz

h

� �@wh

@z

� 	
dx

þ
Z
@Dk
IN n̂xFx

hþ n̂yFy
hþ n̂zF

z
h

� ��
whdx

þ
Z

Dk
IN Shf gwhdx

ð15Þ

For the nonlinear flux (F) and source (S) terms, aliasing errors would
be incurred if one were to use the same Galerkin nodes of the
Lagrange polynomial ‘i for approximating Fh, similar to the approx-
imation of Qh in Eq. (13) i.e., Fhðx; tÞ ¼
PNp

i¼1Fhðxi; tÞ‘i (Hesthaven and
Warburton, 2008). Our model rather exploits supplementary inter-
polating nodes such as cubature nodes for surface integrals (Dk) and
Gaussian quadrature nodes for edge integrals (@Dk) for numerical
accuracy.

In the current model, only the weak DG formulation is used
for the spatial discretization. The semidiscrete strong DG formu-
lation produces similar results for shallow water equations on
the sphere according to Giraldo (2006) and to our knowledge
will have no superior numerical performance for the current ti-
dal applications.

3.1.2. Numerical flux
Probably the most striking feature of discontinuous Galerkin, as

opposed to continuous Galerkin, is the introduction of numerical
flux which improves the flow of information, consistent with prob-
lem dynamics. In fact, the reconstruction of the elemental interface
values is required in DG due to its local definition in terms of poly-
nomial solutions (i.e., the discontinuous formulation) and therefor
a lack of a unique solution at interfaces. This concept is borrowed
from finite volume literature where the exact and approximate
solutions of the Riemann problem are used for such purposes
(e.g., Toro, 2001). One simple and widely used (Nair et al., 2005;
Giraldo, 2006) method of this kind is Lax–Friedrichs or Rusanov flux
which is also employed in the current work.

The Lax–Friedrichs numerical flux F�h is obtained as:

F�h ¼
F�h þ Fþh

2
þ k

2
Q� � n̂� þ Qþ � n̂þ
� �

ð16Þ

in which the ‘‘�’’ and ‘‘+’’ superscripts denote respectively the ele-
ment interior and exterior information along the interface edge.
Also k is an approximation to the local maximum wave speed which
for the shallow water equation is the local fluid speed plus the char-
acteristic gravity wave speed, namely:

k ¼max jU�j þ
ffiffiffiffiffiffi
/�

p
; jUþj þ

ffiffiffiffiffiffi
/þ

q� 	
When the local Lax–Friedrichs flux is inserted into Eq. (14), the

normal numerical flux (i.e., F�hðQ Þ � n̂) becomes:

F�h � n̂ ¼
F�h � n̂þ Fþh � n̂

2
þ k

2
Q� � Qþ
� �

ð17Þ

The Lax–Friedrichs numerical flux combines an averaging cen-
tral scheme (the first term in Eq. (16)) with a correction based on
the direction of information propagation using normal jumps along
the interface edge (the second term including k).

Once the numerical flux is in place, a unique solution is ensured
at the elemental interfaces. Using this scheme, possibly sharp gra-
dients, that may exist for example in the topographic features (as
shown schematically in Fig. 1), are handled sufficiently well with-
out smoothing or adding ad hoc diffusion parameters. We consider
that this property will prove useful in physical understanding of
the numerical results that the model delivers as spatial resolution
increases.

3.2. Discontinuous Galerkin local operations

3.2.1. Mapping the physical triangles onto a reference triangle
In order to avoid numerical computations on the physical

unstructured triangles on the sphere, a geometric mapping W
translates each of the physical triangles D into a reference triangle
I as depicted in Fig. 2. Following Hesthaven and Warburton (2008)
and Giraldo (2006), we define the reference element on a local ref-
erence coordinate system ðr; s; tÞ such that:

I ¼ ðr; s; tÞ; �1 6 ðr; sÞ 6 1; r þ s 6 0; t ¼ 1f g



D
k v

2

v
3

η
t  = −x

r  + x
s

η
t
 = x

r

η
n

η
n

η
t
 = −x

s

z

y
x

v
1

η
n

(−1,−1) (1,−1)

(−1,1)

I

r
t

s

Ψ

Fig. 2. Mapping from a curvilinear triangle in (x,y,z) coordinates onto the standard triangle in (rs, t) coordinates.
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We can express the physical coordinates x ¼ ðx; y; zÞ in terms of
the reference coordinate ðr; s; tÞ using the Np nodes which corre-
sponds to an Nth order basis function:

x ¼
XNp

i¼1

twiðr; sÞxi ð18Þ

where Np ¼ 1
2 ðN þ 1ÞðN þ 2Þ.

The transformation metrics are determined after inverting J ¼ @x
@r

and setting it equal to J�1 ¼ @r
@x (Giraldo, 2001). Using t ¼ 1 the met-

rics become:

rx

ry

rz

264
375 ¼ 1
jJj

zys � yzs

xzs � zxs

yxs � xys

264
375; sx

sy

sz

264
375 ¼ 1
jJj

yzr � zyr

zxr � xzr

xyr � yxr

264
375 ð19Þ

where the derivatives of the physical coordinates in Eq. (19) are
computed using Eq (18) and the gradient of the basis functions.
The Jacobian determinant jJj is derived as:

jJj ¼ @x
@t
� @x
@r
� @x
@s

� �
ð20Þ

Having found the transformation mapping W and its corre-
sponding metrics, the interpolating polynomial ‘i and all the inte-
gration and differentiation operators can be built on the reference
element I.

3.2.2. Building multidimensional Lagrange polynomials
The local polynomial approximation of the solution qðrÞ in the

reference coordinate can be expressed both in terms of basis func-
tions wðrÞ and multidimensional Lagrange polynomials ‘ðrÞ such
that:

qðrÞ ¼
XNp

n¼1

q̂nwðrÞ ¼
XNp

i¼1

qðriÞ‘iðrÞ

where q̂n is the expansion modal coefficient for the nth basis func-
tion and qðriÞ is the conserved variable evaluated at node ri.

The Vandermonde matrix V bridges between the expansion
coefficients q̂ and the grid nodal values qi as (Hesthaven and War-
burton, 2008):

Vq̂ ¼ q; V ij ¼ wjðriÞ ð21Þ

where q is a vector of conserved variables (/ or /u) for all Np grid
points inside an element.

The generalized Vandermonde matrix V plays a pivotal role in
the DG implementation and in order to preserve its stable behav-
ior, proper selection of (1) an orthonormal polynomial basis func-
tion and (2) interpolating points on I are required (Hesthaven and
Warburton, 2008).
In the current DG implementation, we have used the following
basis function:

wmðrÞ ¼
ffiffiffi
2
p

PiðaÞPð2iþ1;0Þ
j ðbÞð1� bÞi; ð22Þ

where Pa;b
n is the nth order Jacobi polynomial and

a ¼ 2
1þ r
1� s

; b ¼ s

We have selected an interpolating nodal set similar to the
Legendre–Gauss–Lobatto (LGL) nodes which are blended and
warped with equidistant nodes in order to provide a well-behaved
interpolation. Details of the implementation and computation of
the basis function as well as the nodal set can be found in Hestha-
ven and Warburton (2008).

Interpolating the solution from the main LGL-type nodes to an-
other nodal set, say cubature nodes rc

i , requires identifying an
interpolating matrix, I , which is built once the modal coefficients
of the LGL-type nodes are determined from Eq. (21) as
q̂ ¼ V�1qlgl. By reapplying Eq. (21) for cubature nodes (where
Vc

ij ¼ wjðrc
i Þ), one can write:

VcV�1|fflfflffl{zfflfflffl}
I

qlgl ¼ qc

So for any nodal sets, upon constructing proper Vpnt (in the
above example Vpnt ¼ Vc) the local interpolating matrix can be
written as:

I ¼ VpntV�1 ð23Þ
3.2.3. Normal and tangential vectors
On every edge of an element, the normal and tangent vectors

are required for construction of the numerical flux and imposing
boundary conditions. Fig. 2 includes the normal ~gn and tangent
vectors ~gt in the physical triangles. For every element, the counter-
clockwise orientation of ðv1;v2;v3Þ is assured which means these
nodes are mapped into the respective points in the ðr; s; tÞ coordi-
nate. Therefore ~gn and ~gt on each physical edge relate directly to
the similar edge in I. In other words we can write:

Edge1 : ~gt ¼
@x
@r

Edge2 : ~gt ¼ �
@x
@r
þ @x
@s

Edge3 : ~gt ¼ �
@x
@s

ð24Þ

For all the edges the normal vector can be simply computed by
taking the cross product of the tangent vector and the position vec-
tor of the edge nodes xf :

~gn ¼ xf �~gt ð25Þ
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3.2.4. Numerical integration
Computing the right-hand side of Eq. (15) at every stage of the

explicit Runge–Kutta method, requires integrating the flux and
source terms on an element surface (surface integrals

R
Dk

) and
numerical flux on its edges (edge integral

R
@Dk

). We have employed
a cubature rule to approximate the surface integrals and a similar
Gaussian quadrature rule for the edge integrals.

The surface integral of any nonlinear functions fh and gh can be
approximated as:Z

Dk

fhðxÞghðxÞdx ¼
XNc

i¼1

jJc;k
i jw

c
i fhðxc

i Þghðxc
i Þ ð26Þ

Here the Nc high order cubature nodes, rc
i , as well as their associated

weights, wc
i , are taken from Cools, 1999 where these are computed

up to order 28 in the reference triangle I. The cubature rule in-
cludes jJc;k

i j as a multiplicative factor, incurred due to mapping rc
i

from I onto Dk.
The number of cubature points Nc varies irregularly based on

the order of cubature approximation M which in return is deter-
mined as M ¼ 3ðN þ 1Þ in order to yield an exact integration (Hest-
haven and Warburton, 2008).

Similar to Eq. (26), the edge integral of any nonlinear function fh

and gh can be approximated as:Z
@Dk

fhðxÞghðxÞdx ¼
XNg

i¼1

jJg;k
i jw

g
i fhðxg

i Þghðx
g
i Þ ð27Þ

where a set of Ng Gaussian quadrature nodes, rg
i and their respective

weights wg
i are constructed in I and mapped onto Dk based on Eqs.

(19) and (20). In the current implementation, we have chosen
Ng ¼ 2ðN þ 1Þ Gaussian points on each single edge where N indi-
cates the DG-order.

In fact since all the edge computations, including boundary con-
dition enforcement, are performed on these Gaussian quadrature
nodes, the tangent and normal vectors are constructed using these
nodes based on Eqs. (24) and (25) respectively. Fig. 3 illustrates the
cubature and Gaussian nodes for N ¼ 4 on a single element along
with the common Np computational nodes. Note that both fh and
gh in Eqs. (26) and (27) are interpolated onto cubature and Gauss-
ian nodes respectively based on Eq. (23).

3.2.5. Boundary condition
When the coastal boundaries are added to the icosahedral geo-

desic grid, in the current shallow water solver, we only need to en-
force the lateral no-flux boundary condition at the boundary edges
as:

~u � ~gn ¼ 0 ð28Þ
Fig. 3. Illustration of the cubature (circles) and Gaussian quadrature nodes
(triangles) for N ¼ 4 which results in Nc ¼ 18 and Ng ¼ 10 as well as Np ¼ 10
computational points (stars).
For implementation purposes, the positive trace of the normal
velocity uþn along the boundary edge should only be corrected such
that uþn ¼ �u�n .

3.3. Temporal discretization

As one of the strengths of the DG formulation relies on high-or-
der spatial accuracy, marching in time with a low-order scheme
such as the forward Euler method is not satisfactory. So in the cur-
rent model we have implemented an explicit third-order Strong
Stability Preserving Runge–Kutta method (SSPRK) (Gottlieb and
Shu, 1998). From tn to tnþ1, the solution is advanced in three stages
as follows:

Q1 ¼ Q n þ DtRHSðtnÞ

Q2 ¼
1
4

3Qn þ Q1 þ DtRHSðtnÞ
� �

Qnþ1 ¼ 1
3

Q n þ 2Q 2 þ 2DtRHSðtnÞ
� �

ð29Þ

In which a variable Dt based on the CFL criterion is computed as
(Hesthaven and Warburton, 2008):

Dt ¼ 2

ðN þ 1Þ2
minðDxÞ

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2
p

þ
ffiffiffiffi
/
p� �" #

ð30Þ

where the factor ðN þ 1Þ2 is associated with the CFL number which
scales with the DG-order, in order to preserve stability of the spatial
discretization even with discontinuous solutions (Gottlieb et al.,
2011).

3.4. Mesh generation

Our grid generation algorithm is based on the previous work of
Stuhne and Peltier (1999), Stuhne and Peltier (2006) and is briefly
explained here. We also discuss the necessary transition from flat
to curvilinear triangles.

3.4.1. Icosahedral grid
Mesh generation is performed within a C++ based software

framework that combines interactive and script-based tools to
facilitate the processing of complex geometry and data sets. The
mesh generator implements a spherical version of the quadtree
technique (Thompson et al., 1999), which recursively subdivides
triangles in regions of interest before invoking balancing tech-
niques to regularize the resulting grids (i.e., to ensure that triangles
sharing a face also share exactly two vertices). Starting from the
basic spherical icosahedron, spherical triangles are selected for
subdivision based on data or interactive inputs. Selective refine-
ment at shorelines is based on computed intersections with the
Global Self-consistent, Hierarchical, High-resolution Shoreline
Database (GSHHS) (Wessel and Smith, 1996), which offers polygo-
nal data at a number of standard resolutions. Unbalanced meshes
are propagated away from the coasts through the iterative subdivi-
sion of triangles that are adjacent to unbalanced triangles, and the
mesh is balanced after a selected number of iterations. This tech-
nique naturally steps resolution between the coarsest and finest
mesh regions.

Topographic data is projected onto completed meshes with a
technique that scans through the regular grid cells of the standard
ETOPO2 data set (Smith and Sandwell, 1997), finds containing
mesh triangles with efficient geometric tree search methods, and
thereby computes a cumulative average over each cell. This tech-
nique has advantages over naive reverse projection because it
automatically averages over all data available for each grid cell
without requiring large orographic databases to be loaded into
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memory in their entirety. It is, moreover, straightforward to add
data from supplementary databases describing particular locales.
3.4.2. Flat to curvilinear triangles
The above package tiles the surface of the sphere with flat trian-

gles. However, as will be shown in Section 4.2, the use of curvilinear
triangles is imperative in order to demonstrate fast convergence
rates and more accurate results, especially for a methodology like
DG where a great emphasis is placed on accuracy.

Following the early work of Sadourny et al. (1968), constructing
a curvilinear triangle with order Ns requires successive splitting of
every edge of an icosahedron into Ns equal arcs. For example on a
triangle DABC, the Cartesian coordinates of point i on edge AB can
be expressed as:

xAxi þ yAyi þ zAzi ¼ ai

xBxi þ yByi þ zBzi ¼ a0i
xi yi zi

xA yA zA

xB yB zB

�������
������� ¼ 0

where ai ¼ cosðiNs=cABÞ, a0i ¼ cAB � ai and cAB denotes arc length AB
in radians. To close the above system of equations, points A;B and
i must be coplanar which is enforced by the third equation above.
All the grid points are determined following the same approach.
Once these equidistant grid points are in place for order Ns > N,
they are redistributed to LGL-type nodes. We set Ns ¼ N þ 2, where
N is the polynomial order for the DG scheme to ensure less error
due to geometrical approximation of the spherical surface than
the numerical errors (see Section 4.2 for more information). Fig. 4
illustrates the icosahedral geodesic grids before and after refining
the flat triangles into curvilinear triangles with Ns ¼ 4.

As a consequence of using curvilinear triangles, the transforma-
tion metrics and thus jJj in Eq (20) would not be constant any long-
er on an element. So in all the integrations including the transient
term in Eq (15), because of the mapping from I to D; jJj must re-
main inside the integral and be treated accordingly.
Fig. 4. Illustration of a series of icosahedral grids with varying number of triangular
elements before and after grid refinement using Ns ¼ 4.
3.5. MPI parallelization

The explicit DG formulation, despite benefiting from its unique
conservation properties and high orders of accuracy, is obliged to
follow the CFL criterion as explained in Section 3.3 and hence small
time steps are imposed (Nair et al., 2005; Nair et al., 2005; Giraldo,
2006; Laeuter et al., 2008).

In ocean and atmospheric modeling, long simulation times are
inevitably required. For the purposes of the current work, the
transient time to reach equilibrium in tidal simulations can ex-
tend to as many as 20–40 model days. In addition, it is desirable
to take advantage of the unstructured grid framework and refine
the mesh to for example 3–6 km resolution in regions of interest
which in turn leads to Dt � 1–2 s for stability reasons. For such a
resolution the model time step (3-stages of Runge–Kutta) can
take roughly 20–30 s when compiled efficiently in FORTRAN
and run sequentially, assuming no memory issues arise. That
means the total computational time for one single tidal simula-
tion could extend to 1–2 years! These estimates are based on
one of the tidal simulations presented in the results section of pa-
per, in which the grid resolution varies from about 120 km in the
deep ocean to about 15 km on all global coastlines (K ¼ 557;657
elements). With np ¼ 512 computing cores employed, on the con-
trary, the elapsed wall clock time for the M2 tide simulation was
reduced to 3 days to obtain 21 model days of data, employing an
N ¼ 3 order DG methodology.

Furthermore the DG scheme, in contrast to finite volume and fi-
nite element methods, is characterized by almost perfect scaling
due to its compact stencil and small communication halo (Kelly
and Giraldo, 2012). So the aforementioned restriction on time step-
ping can be alleviated provided that we take advantage of this scal-
ing property and efficiently parallelize the model. We have
parallelized the current shallow water solver using a pure Message
Passing Interface (MPI) methodology as discussed below.
3.5.1. Domain decomposition
The computational domain is decomposed into np partitions

using the well-known and widely used package METIS (Karypis
and Kumar, 1998). The output of this decomposition is a vector list
of elements along with their respective processor rank to which
they belong. Fig. 5 illustrates an example of such a decomposition
where each color indicates one computational domain which is
handled by a single core.
Fig. 5. Illustration of the domain decomposition using METIS (Karypis and Kumar,
1998) package where every color indicates one domain which belongs to one
computational core.



Table 1
The pseudo code for the MPI parallelized Shallow Water code.

Pseudo code: RHS Computation

– Interpolate the solution into Gaussian and cubatur nodes

– Find the positive and negative trace of the conserved variables
– Impose the no-flux boundary condition if needed

– Boundary exchange: Non-blocking message sending and receiving

– Compute all the surface integrals for internal elements

– Waitall

– Read the received message

– Compute the numerical flux

– Compute the RHS
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3.5.2. Message passing
When the MPI code is initialized, identical copies of the code are

available for all the requested cores. What differs between cores
from an algorithmic standpoint are some local information such
as how many elements Kloc exist in each domain and some glo-
bal-to-local information such as connectivities between global ele-
ments which identifies the surrounding neighbors. There is no
need for access to a shared memory since all the above required
information is computed independently for each processor
depending on its rank and the domain decomposition outputs.

For the internal elements of each domain, the assigned core
computes all the surface and edge integrals of Eq. (15) indepen-
dently, as if the code was running sequentially (i.e., without having
to share any information with other cores). However for the bound-
ary elements, the computation of the numerical flux as described in
Eq. (17) requires the positive trace of the information which lies in
the neighboring domain (or core). This is the point where the com-
munication between cores comes into play. Even for the boundary
elements, the surface integral of Eq. (15) requires no exterior infor-
mation and is entirely local to the domain.

We have employed a non-blocking send and receive technique
(MPI_ISEND and MPI_IRECEIVE) which hides the communication
latency while the messages are on the fly. In other words (as shown
in the form of the pseudo code in Table 1) the boundary exchange
is initiated at the beginning of RHS computation and rather than
waiting for the messages to be sent/received right away, the rest
of the locally internal computations are performed while the com-
munication is being done. The positive trace of the boundary ele-
ments is needed at the very last step before finishing the RHS
computation by which time the message correspondence between
cores is almost done, minimizing the waiting time.
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Fig. 6. Strong scaling performance of
4. Benchmark results and discussion

In this section, the parallel performance, accuracy and conver-
gence of the proposed model are evaluated in the context of a set
of aquaplanet benchmarks; namely cases 2 and 5 from the stan-
dard test suite of Williamson et al. (1992) and the development
of a barotropically unstable jet due to an initial perturbation of a
balanced flow as proposed by Galewsky et al. (2004).

4.1. Scaling

The parallel performance of the model is studied here by per-
forming a strong scaling test where the size of the problem is kept
constant but the number of computation cores are successively in-
creased. An icosahedral grid with K ¼ 327;680 elements (i.e., grid
spacing of about 50 km) and DG-order N ¼ 3 is chosen. The initial
conditions are based on case 5 in (Williamson et al., 1992) and the
wall-clock times are reported after 1 day of model run for
convenience.

Fig. 6 demonstrates the results of the scaling analysis. The left
plot shows the variations of the wall-clock time for increasing
number of processors (np) on a log–log scale. The wall-clock time
is almost precisely halved upon doubling of np which is excellent
and indicates almost perfect scaling. The same conclusion is evi-
dent from the rightmost plot that shows the speedup variation
with np. It was not feasible to run the code at this resolution
sequentially, so for speedup calculations, the wall-clock time for
np ¼ 1 is assumed to be eight times more than the elapsed time
for np ¼ 8.

The DG formulation as described in Eq. (14), is characterized by
a very compact communication stencil which only requires the
information on the three edges of the element as well as on the
common edge from the immediate neighbors (Cockburn and Shu,
1998). The above spectacular linear scaling is achieved mainly
due to this localized formulation which contrasts with the contin-
uous Galerkin formulation as also established by Kelly and Giraldo
(2012).

4.2. Convergence study

The DG formulation provides the added flexibility of delivering
a converged solution solely by increasing polynomial orders (p-
refinement). Here we investigate the convergence properties of
the proposed model by performing both h and p-refinement tests.
8 16 32 64 128 256 512 1024 2048 4096
8

16

32

64

128

256

512

1024

2048

4096

Number of Processors

Sp
ee

du
p

the MPI shallow water DG code.
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The model is initialized by a zonal wind field (solid body rota-
tion) and a geostrophically balanced height field as per test case
2 of Williamson et al. (1992) with:

x ¼ 2p
12 days

; u ¼ �xy;xx;0½ �T

/ ¼ /0 � axu0 þ
u2

0

2

� 	
ðsin h cos a� cos k cos h sinaÞ2

where u0 ¼ ax and the initial geopotential height is
/0 ¼ 2:94� 104 m2/s2. The present results are only for a ¼ 0 after
5 model days. Also since the problem is steady, the final solution
is essentially identical to the initial flow fields. Taking the reference
exact solution as q, the diagnostic L2 error norm for the discretized
numerical solution, qh is calculated as follows:

L2ðqÞ ¼
R

S qðxÞ � qhðxÞ½ �2dSR
S qðxÞ2ds

( )1
2

L2ðqÞ ¼

R
S

X3

i¼1

qðiÞðxÞ � qðiÞh ðxÞ
h i2

dSR
S kqðxÞk

2ds

8>>>><>>>>:

9>>>>=>>>>;

1
2

where
R

S is an integration over the whole surface of the sphere. The
first expression above is used for the scalar height field and the sec-
ond for the wind field.

Fig. 7 shows a log–log variation of the L2-norm with K1=2 (as a
measure of grid spacing) for the velocity and height fields with flat
and curvilinear triangles. The mean rate of convergence for each
polynomial order N is also shown in this figure. As will be inferred
from the top two panels of this figure, when the sphere is tiled with
flat triangles, not only is the optimal convergence rate of N þ 1 not
observed, but also increasing the order of accuracy has no impact
whatsoever on the accuracy of the results. This problem arises
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Fig. 7. Variation of L2-norm for the velocity (left plots) and height fields (right plots) whe
(bottom plots).
due to the fact that geometrical errors have become the most
prominent numerical errors. In other words, poor approximation
of the sphere (see Fig. 4) eliminates p-convergence. In the bottom
two plots of Fig. 7, curvilinear tessellations of the sphere have been
exploited which clearly improves the convergence rate to its opti-
mal value.

For a plain icosahedron (K ¼ 20 elements) in Fig. 7, the L2-error
norm can quickly reach about 10�5 with a higher order DG method
of N ¼ 8. The equivalent accuracy in terms of L2-error can be ob-
tained on a grid with 210 times more elements (K ¼ 20;480 ele-
ments) and a second order scheme (N ¼ 2). In terms of the
sequential wall-clock time, the former took about 40 s while the
latter run continued for about 3 h! This superior performance of
a higher-order DG method, is mainly applicable to atmospheric
studies in which no lateral boundaries are present provided that
the computed fields are sufficiently smooth; for oceanic applica-
tions the intricacy of the coastal configuration inherently requires
use of a finely resolved mesh. However the deep ocean still benefits
from this capability, especially if N increases from shallow to deep
areas while the mesh becomes less refined.

4.3. Isolated mountain induced Rossby waves

This is test case 5 in (Williamson et al., 1992) in which a zonal
flow impinges on a single broad mountain so that the dominant
form of the response consists of a train of Rossby waves. There is
no analytical solution for this test case, but comparisons are made
with a high-resolution reference solution provided by the German
Weather Service from a T426 spectral simulation (31 km resolution
at the equator) using the shallow-water spectral model of the Na-
tional Center for Atmospheric Research (NCAR) (Jakobchien et al.,
1995).

The initial conditions for both height and wind field are as in
case 2 but h0 ¼ 5960m and u0 ¼ 20m=s. The mountain topography
is specified as:
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re the spherical surface is tiled with flat triangle (top plots) and curvilinear triangles
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Fig. 8. Model results for test case 5 of Williamson et al. (1992) with N ¼ 3 and level 7 grid. Left: Total height field at day 0, 5, 10 and 15 of zonal flow over an isolated
mountain. The contour interval is 50 from 5050 to 5950. Right: Comparison with high-resolution reference results from German Weather Service. Absolute difference in the
height field kh� hrefk is plotted for the same days.
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hs ¼ hs0ð1� r=RÞ
where hs0 ¼ 2000 m, R ¼ p=6 and r2 ¼min½R2; ðk� kcÞ2 þ ðh� hcÞ2�
with kc ¼ 3p=2 and hc ¼ p=6.

Fig. 8 illustrates contour plots of the total height field h at 5-day
intervals as well as the absolute ‘‘error’’ contours when compared
against the reference solution. The pattern of the difference con-
tours is almost identical to the similar results reported in (Blaise
and St-Cyr, 2012) which were based upon application of a cubed
sphere DG model. These residual plots might represent the phase
differences in the surface gravity wave component of the response
to the topographic forcing and thus might be better described as
representing the difference in the generated surface gravity waves
between different models.
4.4. Barotropic instability of a balanced zonal jet

In this test case, a mid-latitude zonal jet with a high merid-
ional gradient is prescribed as the initial wind field so that the
initial state satisfies the condition for linear barotropic instabil-
ity (e.g., see Vallis, 2006). The initial height field is also deter-
mined by numerically integrating the balance equation while
maintaining a fixed global mean layer depth. A localized Gauss-
ian bump, centered at the jet core and vanishing at the pole, is
added to the height field as an initial perturbation which in-
duces the development of barotropic instability (please refer
to (Galewsky et al., 2004) for the exact form of initial condi-
tions). The inviscid variant of this test case is investigated in
this section.



Fig. 9. Development of barotropic instability from perturbing a geosptrophically balance jet field. The vorticity contours resulted from the current DG model with N ¼ 3 on
level 5 (left plots) and level 7 grid (right plots) after 4, 5 and 6 days (from top to bottom).
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This is a challenging test case because of its high degree of non-
linearity and the sharp gradients that develop within the zonal jet.
In addition, a common difficulty arises due to the misalignment of
icosahedral grids with the prescribed zonal jet that results in a
wavenumber five disturbance pattern in the flow field even with
zero perturbation (St-Cyr et al., 2008; Laeuter et al., 2008; Ii
et al., 2010). Nonetheless, in a geostrophically balanced flow, the
unperturbed zonal jet must remain unchanged while the numeri-
cal solution is evolving and this is usually achieved by increasing
the spatial resolution. In our DG model and in the absence of per-
turbation, the same disturbance pattern is observed for a very
coarse resolution of the level 4 icosahedral grid (about 4� resolu-
tion with K ¼ 5120) but not in a level 5 grid (about 2� resolution
with K ¼ 20;480) both with N ¼ 3.

Since there is no available reference solution, here we compare
the results on a level 5 grid with the results obtained for the same
problem on a higher resolution level 7 grid (almost 0:5� resolution
with K ¼ 327;680) while keeping N ¼ 3 in both cases. The vorticity
fields after 4, 5 and 6 days of evolution are shown in Fig. 9 illustrat-
ing the development of the barotropic instability. As inferred from
this figure, although the small-scale features are captured more
accurately in the more refined grid, the general structure of the
flow fields is similar and resembles qualitatively and quantitatively
the patterns reported in (Galewsky et al., 2004; St-Cyr et al., 2008;
Ii et al., 2010).

5. Tidal simulations

For this primary target problem, the governing equations are
extended to include the influence of both boundary layer drag as
well as the internal tide drag in the deep ocean together with the
influence of gravitational self-attraction and loading as described
in Section 2.2. Here, we will focus entirely upon the dominant
semi-diurnal M2 tide with amplitude and frequency of
A ¼ 24:2334� 10�2 m, and x ¼ 1:405189� 10�4 s�1 respectively
with a Load Love number of j ¼ 0:693 (Arbic et al., 2004 Table 1)
employed as basis for the approximation of the influence of gravi-
tational self-attraction and loading. In our model, the solution for
this dominant tidal constituent usually reaches equilibrium after
about 12 days of simulated time. The M2 tidal amplitude (A) and
phase (w) have been computed by fitting a cosine function
A cosðxt � wÞ to the model results using a nonlinear least square
method.

In order to validate our numerical results, we compare them
with solutions from TPXO 7.2, an updated version of the global in-
verse model by Egbert et al. (1994), which is constrained by the
TOPEX/Poseidon (T/P) satellite altimeter data. Fig. 10 depicts global
graphics of the M2 tidal amplitude and phase for both the DG mod-
el and TPXO 7.2 altimetry based results. The numerical results from
the DG model will be seen, on the basis of visual inspection, to
agree very well with the assimilated solutions in both amplitude
and phase. In particular, the regions of high and low tidal elevation
match well and the amphidromes (where the phase contour lines
meet) are located in almost the identical positions. However we
do observe more locally energetic tides in the DG-model especially
near certain coastlines. Care must be taken in interpreting the in-
verse model results because the T/P datasets are only available
equatorward of 66� and are most reliable (with an accuracy of a
few centimeters) in the deep ocean where h > 1000 m (Egbert
et al., 2004).

The time averaged discrepancy between the altimetry based
observation and model prediction can be diagnosed as an area
averaged deviation from the reference solution and is calculated
as:



Fig. 10. The global picture of the M2 tidal amplitude (top) and phase (bottom) from Left: DG-model with N ¼ 3 and Right: TPXO 7.2 dataset on a a grid with about 60 km
resolution in deep ocean and 7.5 km around the global coasts.

Fig. 11. The regional picture of the M2 tidal amplitude around Hudson Bay using
the DG model with N ¼ 3 and a global grid with about 60 km resolution in deep
ocean and 7.5 km around the global coasts.
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Df ¼
h
RR

f� ftpx

� �2dAiRR
dA

( )1=2

where brackets refer to time-averaging over one tidal period. Also
in order to evaluate the fraction of the sea surface height variance
captured by our DG model, d ¼ 1� ðDf=ftpxÞ

2
, a temporally and spa-

tially averaged reference signal ftpx, is computed as:

ftpx ¼
h
RR

f2
tpxdAiRR
dA

( )1=2

For an M2 tidal simulation with a resolution varying from a level
7 to 10 quadtree mesh (coarse resolution of 60 km in the deep
ocean increasing to about 7.5 km near coastlines globally) and
DG-order N ¼ 3, the above diagnostics are calculated after exclud-
ing high-latitude and shallow tides (as is traditional). This yields
Df ¼ 12:6 cm and from the TPXO 7.2 solution ftpx ¼ 25:9 cm which
results in d ¼ 76:3%. This variance fraction improves to d ¼ 90:5%

(with Df ¼ 11:6 cm and ftpx ¼ 37:5 cm) when computing for tidal
amplitude only and ignoring errors in phase. In fact, the relatively
larger errors in tidal phase are a consequence of the crude scalar
estimation of the self-attraction and loading term as pointed out
by Ray (1998). However, according to our results the tidal ampli-
tude is not affected severely by this approximation.

A closeup illustration of the multiple levels of grid refinement is
given in Fig. 11 where the coloring shows the predicted M2

amplitude.
The model can also be assessed from an energetics standpoint.

The kinetic and potential energies are calculated as:

KE ¼ 1
2 q0

RR
hu � udA;

PE ¼ 1
2 q0g

RR
f2dA

ð31Þ

where q0 is the density of ocean water. At equilibrium, the total ti-
dal energy of the system shows no secular variation. The dissipation
terms are Ddis ¼ D � u where D ¼ DBL þ DIT (as described in Sec-
tion 2.2) for the boundary layer and internal tide partitioning of
the energy dissipation respectively.
For the purpose of analysing the energetics of the tidal solution
we have employed both uniform grids and coastally refined grids.
The uniform grids to be employed are the following:

	 U1: Global level 6 quadtree mesh (Dx � 120 km, K ¼ 57;482)
	 U2: Global level 8 quadtree mesh (Dx � 30 km, K ¼ 928;450)

To compare with the results obtained for the uniform grids our
nonuniform grid configurations have been built with successive
levels of refinement from the deep ocean towards global shorelines
as explained in Section 3.4.1. These nonuniform grids are the
following:

	 NU1: Global coastal refinement up to level 7 quadtree mesh
(Dx � 60 km) and level 5 (Dx � 240 km) in the deep ocean
(K ¼ 101; 043).
	 NU2: Global coastal refinement up to level 9 quadtree mesh

(Dx � 15 km) and level 5 (Dx � 240 km) in the deep ocean
(K ¼ 508;647).
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	 NU3: Global coastal refinement up to level 9 quadtree mesh
(Dx � 15 km) and level 6 (Dx � 120 km) in the deep ocean
(K ¼ 557;657).
	 NU4: Global coastal refinement up to level 10 quadtree mesh

(Dx � 7.5 km) and level 7 (Dx � 60 km) in the deep ocean
(K ¼ 1;368;127).

These grid configurations have been chosen so as to illustrate
the effect of grid refinements on the tidal energetics and its global
dissipation. To our knowledge such a comparison is unprece-
dented, primarily because no adequate numerical framework, such
as is embodied in the current DG methodology, has been available.

Tables 2 and 3 summarize the model results for global energy
and dissipation terms respectively with the above grid configura-
tions. They also include the partitioning of the global kinetic and
potential energies between deep ocean and shallow seas and be-
tween poleward and equatorward of h ¼ 66�. Furthermore, the dis-
sipated power in terms of the boundary layer and internal tide
drags are also calculated as a function of this partitioning. Wher-
ever possible, relevant values are reported from the T/P altimeter
data together with the assimilated solutions of the TPXO.5 inverse
global model (Egbert and Ray, 2001; Egbert and Ray, 2003). Notice
that, while the total dissipation Dtot � 2:44TW is rigorously in-
ferred from T/P observations, its shallow/deep division into DBL

and DIT results from the assimilated TPXO.5 model and so there
is clearly an issue concerning their accuracy which is reflected in
Table 3 by the question marks. The results tabulated in Tables 2
and 3 motivate the following observations:

	 Model resolution plays an important role in the prediction of
tidal energetics and dissipation, in agreement with the previous
arguments of Egbert et al. (2004) Fig. 2 and Griffiths and Peltier,
Table 2
The effect of various grid configurations on energetics of the global M2 tides. The results f
altimetry and the assimilated solution of TPXO.5 (Egbert and Ray, 2003 Table 1).

Global energy ð�1017JÞ TPXO. U1 U1, N = 5

Etot – 10.08 9.90
PE – 4.86 4.76
KE – 5.22 5.14

jhj 6 66�; h P 1000 m
Etot 3.06 7.50 7.32
PE 1.28 3.47 3.38
KE 1.78 4.03 3.94

jhj 6 66�

Etot – 9.56 9.37
PE – 4.60 4.50
KE – 4.96 4.87

Table 3
The effect of various grid configurations on the global dissipation of M2 tides in terms of b
model are compared with the results inferred from T/P altimetry and the assimilated solu

Global dissipation ð�1012WÞ TPXO. U1 U1, N = 5

Dtot 2.44 3.77 3.84
DBL 1.65? 3.51 3.58
DIT 0.78? 0.26 0.26

jhj 6 66�; h P 1000 m
Dtot – 0.22 0.22
DBL – 0.03 0.03
DIT – 0.19 0.19

jhj 6 66�

Dtot – 3.23 3.26
DBL – 2.98 3.00
DIT – 0.26 0.25
2009 Fig. 5. However because of the robustness of the newly
developed DG model in handling millions of nonuniform ele-
ments in parallel, we are now able to segregate the effect of grid
refinements in the deep ocean as opposed to refinements in the
coastal regions in the global tidal energy budget.
	 In the uniform cases, the resolution of the U1 grid is increased

by a factor of 4 in U2 and as a consequence, the relative error
(�) in Etot reduces from 145% to 52:3% and from 54:5% to
33:2% in Dtot. This is in contrast with the minimal sensitivity
of PE and KE to the grid resolution in (Egbert et al., 2004
Fig. 2) (the case where their internal tide parameterization is
active). As a consequence of increasing mesh resolution (either
uniformly or nonuniformly), more topographic and coastal fea-
tures are resolved and we believe the sensitivity of the results to
grid resolution is essential and originates from the physics of
the problem.
	 On the U1 grid, the effect of increasing the DG order from N ¼ 3

to N ¼ 5 seems to have small but not negligible impact on the
accuracy of the results. It is interesting that DBL increases (only
in shallow seas) while the total available energy decreases. This
may imply that nonlinearities associated with the boundary
layer drag especially in shallow seas are more accurately cap-
tured in our nonlinear global tidal model. For the other grids,
we have only run the model using N ¼ 3 for the purpose of
obtaining illustrative results.
	 In the case NU2, the refined coastal resolution, even with a

coarse grid spacing of 240 km in the deep ocean, dramatically
improves the predictions for KE, PE and Dtot. The error in Etot

becomes 18% while for Dtot; � ¼ 11%. In the more intense case
of NU4, however, these errors are further reduced to 15:7%

and 6:6% respectively. It is interesting that in NU3, although
the global dissipation is within 1:2% of the results inferred from
rom our purely numerical DG model are compared with the results inferred from T/P

U2 NU1 NU2 NU3 NU4

6.54 8.30 4.94 5.26 4.82
3.09 3.87 2.33 2.49 2.21
3.45 4.43 2.60 2.77 2.61

4.66 6.19 3.61 3.82 3.54
2.13 2.78 1.63 1.73 1.54
2.53 3.41 1.98 2.09 2.00

6.14 7.94 4.69 4.98 4.57
2.90 3.69 2.22 2.36 2.09
3.25 4.25 2.47 2.63 2.48

oundary layer and internal tide dissipation. The results from our purely numerical DG
tion of TPXO.5 (Egbert and Ray, 2003 Table 1).

U2 NU1 NU2 NU3 NU4

3.25 3.33 2.17 2.41 2.28
2.54 2.96 1.77 1.96 1.74
0.70 0.37 0.40 0.45 0.54

0.56 0.29 0.28 0.31 0.37
0.01 0.02 0.01 0.01 0.01
0.55 0.27 0.27 0.30 0.36

2.82 2.90 1.90 2.08 2.00
2.12 2.54 1.50 1.63 1.46
0.70 0.36 0.40 0.45 0.54
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T/P data, Etot still differs by 24:8%, suggesting once more the
importance of deep ocean refinement in correctly predicting
both tidal energy and its dissipated power.
	 Focusing on NU1 and NU2, while the resolution in the deep

ocean is similar, the mesh is four times more refined in NU2
near shorelines. This coastal refinement seems to have a huge
impact on the tidal energetics and the dissipated power which
is not surprising since a better realization of geometry must
lead to a more accurate solution. Notice that while DIT is almost
the same in these two cases, a more accurate representation of
the coastlines manifest itself only in DBL. This trend is also
observed in other cases where deep water refinement enhances
DIT predictions whereas refinement of near-shorelines leads to
more dissipations due to bottom boundary layer drag DBL. In
fact this argument is more evident in tidal dissipation at
h P 1000 where the main sink of energy is due to DIT, leaving
DBL to be functioning solely in shallower water.
	 Nonetheless, the role of internal tide generation (as parameter-

ized in our model) seems not to be restricted only to the deep
ocean. In fact an interesting partition of about 33% (as the ratio
of DIT in shallow seas to the global dissipation) is observed in
NU2, NU3 and NU4.
	 The embedded unstructured triangulation of the sphere imple-

mented in the model, makes investigation of the high latitude
and polar tides feasible. From our results in grids NU2, NU3
and NU4, about 5% of the total available M2 tidal energy lies
at latitudes jhjP 66�. This is especially important as the analy-
ses of Griffiths and Peltier (2008); Griffiths and Peltier, 2009
have demonstrated that the tides in the polar regions, especially
the Arctic Ocean, are massively amplified under Last Glacial
Maximum (LGM) conditions when the Arctic Ocean basin
becomes resonant at the M2 period.

6. Summary and conclusion

In this paper, we have described the development of a higher
order, parallel framework based on the discontinuous Galerkin for-
mulation which is particularly aimed at multi-scale tidal simula-
tions. The different numerical ingredients required in the
development of this structure, including the MPI parallelization,
were fully described.

We employed a strong scaling test for the purpose of analyzing
the parallel performance of the model and this enabled us to dem-
onstrate essentially perfect scaling up to 4096 cores beyond which
the model has not yet been tested. In a convergence study, we
demonstrated the capability of such a higher order method and
emphasized the importance of employing curvilinear rather than
flat triangles in order to achieve the fast convergence rates of
N þ 1.

Further validations were obtained by using an unsteady stan-
dard aquaplanet test case from Williamson et al., 1992 investigat-
ing the generation of Rossby waves from the flow over an isolated
mountain. We compared our results with the high resolution spec-
tral model of the German Weather Service and found small spuri-
ous patterns in the height field analogous to those published
recently by Blaise and St-Cyr (2012). These small scale patterns
might be associated with a phase shift in surface gravity waves
predicted by different models. In addition to this test case, a more
recent and challenging test involving the development of barotrop-
ic instability of a zonal jet was used to initialize the model and the
results agreed very well with other published works.

We also demonstrated the model results for global M2 tides on a
variety of nonuniform grid configurations. Tidal amplitude and
phase maps compared reasonably with TPXO 7.2 solutions. The
scalar approximation of the self-attraction and loading seems to af-
fect the phase predictions only; For energetics studies, because of
the time averaging over a tidal period, minor phase shifts do not
affect adversely the model predictions. The tidal energetics in
terms of available potential and kinetic energy were diagnosed
and increasingly converged results were obtained as we refined
the mesh. This is consistent with the conjectures made by Egbert
et al. (2004) and Griffiths and Peltier (2008). But more interest-
ingly, the deep ocean need not be as finely resolved as the coastal
areas in order to obtain accurate estimates of total available energy
as well as the total dissipated energy. No filtering or numerical lim-
iters were necessary in our simulations while we also employed no
smoothing of the bottom topography. This allowed an accurate
representation of sharp gradients in the bottom topography.

Future work will involve testing the model on a larger number
of computational cores and adding more refined topographic data
for local tidal studies within our global model. The iterative
approximation of self-attraction and loading must also be included
in the model in order to better estimate the tidal time series. Using
the developed model, one can study different tidal constituents not
only under modern conditions but also during the Last Glacial
Maximum (LGM). These analyses can be focused on different re-
gions of interest, for example the Arctic Ocean and the southern
hemisphere western Atlantic in the vicinity of the Patagonian shelf.
Furthermore, global maps of dissipation from the anisotropic inter-
nal tide parameterization utilized in the current model, can be gen-
erated with a global grid that is locally resolved at regions of high
topographic gradients and super-refined near shorelines; capabili-
ties which have become available because of the efficient multi-
scale properties of the current model.
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